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Bursting and large-scale intermittency in turbulent convection with differential rotation
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The tilting mechanism, which generates differential rotation in two-dimensional turbulent convection, is
shown to produce relaxation oscillations in the mean flow energy integral and bursts in the global fluctuation
level, akin to Lotka-Volterra oscillations. The basic reason for such behavior is the unidirectional and conser-
vative transfer of kinetic energy from the fluctuating motions to the mean component of the flows, and its
dissipation at large scales. Results from numerical simulations further demonstrate the intimate relation be-
tween these low-frequency modulations and the large-scale intermittency of convective turbulence, as mani-
fested by exponential tails in single-point probability distribution functions. Moreover, the spatio-temporal
evolution of convective structures illustrates the mechanism triggering avalanche events in the transport pro-
cess. The latter involves the overlap of delocalized mixing regions when the barrier to transport, produced by
the mean component of the flow, transiently disappears.
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Bursting in the fluctuation level and relaxation oscill
tions in the kinetic energy of differential rotation have r
cently been observed in numerical simulations of a wide
riety of convectively driven systems, both plasmas a
ordinary fluids@1–5#. Moreover, the origin of large-scale in
termittency frequently measured in turbulent flow remains
outstanding enigma@6–8#. In this paper, we present gener
arguments supported by numerical simulations revealing
nature and intimate relation between these phenomena
two-dimensional turbulent convection.

Strong magnetic fields in plasmas and fast solid body
tation of ordinary fluids tend to make their low frequen
collective motions essentially two-dimensional@9,10#. As a
consequence, the equation of motion can be reduced to
form of a vorticity equation

S ]

]t
1 ẑ3¹c•¹ D¹'

2 c5Lc~c,u!, ~1a!

where for simplicity we have applied slab coordinates witẑ
in the direction of the magnetic field or the rotation axis, a
¹' denotes the gradient operator in the perpendicular pla
The left-hand side describes vorticity advection with the
locity v'5 ẑ3¹c, while the operatorLc contains model
dependent effects such as dissipation and coupling to o
fields through, e.g., buoyancy or electric currents. For m
netized plasmas the stream functionc(x,t) may be identified
with the electrostatic potential.

A self-consistent transport problem is settled when
vorticity equation is coupled to the evolution of an advec
thermal fieldu(x,t) governed by

S ]

]t
1 ẑ3¹c•¹ D u5Lu~c,u!, ~1b!

where again the term on the right-hand side describes eff
different from two-dimensional advection. The operatorsLc
andLu couple the two equations, and under the Boussin
approximation the corresponding terms are linear in
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fields c andu. We will presently consider the paradigmat
case of two-dimensional thermal convection@10–12#

Lc~c,u!52PR
]u

]y
1P¹'

4 c, Lu~c,u!52
]c

]y
1¹'

2 u,

~1c!

wherex denotes the radial direction,y represents the periodi
azimuthal direction, andu is the temperature deviation from
the hydrostatic equilibrium. We have introduced the Pran
and Rayleigh numbersP and R, and spatial and tempora
scales are normalized to the fluid layer depth and the ass
ated thermal diffusion time, respectively. The same mo
equations pertain to electrostatic flute modes in nonu
formly magnetized plasmas.

An important property of many convection systems is th
they are confined to geometries with spatial periodic
There is thus the freedom for differential fluid rotation in th
corresponding azimuthal directions. Generally, such symm
ric flows are not driven by linear instability mechanisms b
are subject to collisional damping. They can however be s
tained by linearly unstable fluctuating motions through a t
ing mechanism@10–12#. It is convenient to define the radia
profile of any field, denoted by a zero subscript, as its spa
average over the periodic directions. In particular we int
duce the azimuthally mean flow component

v0~x,t !5
1

LE0

L

dy
]c

]x
,

where L is the periodicity length. Similarly, we define th
spatial fluctuation of any field as the deviation from its pr
file, and denote this by an overtilde. Note that the mean fl
v0 is intrinsically incapable of mediating convective tran
port along the driving thermal gradients, and hence form
benign path for fluctuation energy.

Averaging Eq.~1a! over the periodic direction we obtai
the generic equation for the mean flow component

]v0/]t 1 ]/]x ~ ṽxṽy!05P ~]2v0/]x2! .
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While the term on the right-hand side describes viscous
fusion, the last term on the left-hand side shows the po
bility of local flow generation by Reynolds stress. Furth
integrating over the radial domain, it is evident that th
mechanism does not create net angular momentum. H
the ensuing mean flows are intrinsically sheared correspo
ing to differential rotation.

Based on these fundamental properties, it is natura
separate the kinetic energy into two components compr
by the fluctuating and mean motions, defined respectively

K~ t !5E dx
1

2
~¹'c̃ !2, U~ t !5E dx

1

2
v0

2 ,

where the integrals overdx extend over the whole fluid vol
ume under consideration. The evolution of these energy
tegrals are readily derived from the vorticity equation~1a!,

dK

dt
52E dx c̃Lc~c,u!1E dx v0

]

]x
~ ṽxṽy!, ~2a!

dU

dt
52E dx c0Lc~c,u!2E dx v0

]

]x
~ ṽxṽy!. ~2b!

The first term on the right-hand side of the two equatio
contain respectively the linear instability drive and col
sional dissipation of the sheared mean flows. The last t
on the right-hand side of either equation shows the con
vative transfer of kinetic energy between these linea
forced and damped modes. Upon integration by parts,
transfer term in Eq.~2a! may be written as

E dx
]c

]x

]c

]y

]v0

]x
52E dx S ]y

]xD
c
S ]c

]y D 2 ]v0

]x
.

The first expression above shows that convection cells ti
such as to transport positive azimuthal momentum up
gradient of a sheared mean flow will sustain the latter aga
collisional dissipation. Alternatively, the second relation
dicates that modes with lines of constant phase which s
with the flow shear will give their energy to the latter.

Let us further consider the linear evolution of a pla
wave componentC exp(ikxx1ikyy) of the stream function
whose vorticity is subject to passive differential advection
a uniformly sheared flow@13#. Given the constant shear ra
v08 , the stream function at subsequent times is given by

C~kx
21ky

2!

~kx2v08kyt !
21ky

2
exp@ i ~kx2v08kyt !x1 ikyy#.

From the exponent we see that the radial wave num
changes linearly in magnitude with time, corresponding t
continuous increase of the tilting of the plane wave with
mean flow. This shearing effect will effectively channel flu
tuation kinetic energy to larger radial wave numbers, lead
to enhanced fluctuation dissipation. A broadening in thekx
direction of the energy spectrum is thus expected when
differential rotation builds up. This mechanism has been c
sidered as the crucial one for the self-regulation of conv
tion systems@4,9,15#. Note however that 1/t2 asymptotic am-
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plitude decay, a consequence of the conservation
enstrophy, shows that sheared structures will invariably lo
their kinetic energy after a possible transient growth. Hen
structures which are not forced to be tilted against the fl
shear give their energy to the mean flow.

Since individual azimuthal mode numbers are not direc
affected by the presence of differential rotation, the kine
energy transfer process can be described by decompo
each mode into an amplitudeuĉky

(x)u and a phasedky
(x)

whose radial dependence gives the tilting of the modeky .
The contribution from a spectrum of such modes to the m
flow acceleration is given by

]

]x
~ ṽxṽy!052 (

ky.0
4ky

]

]x
S uĉky

u2
]dky

]x
D ,

again indicating that a radially inhomogeneous phase is n
essary for mean flow modification by fluctuating motion
This gives the evolution of the mean flow energy integra

dU

dt
52E dx c0Lc2E dx (

ky.0
4v08kyuĉky

u2
]dky

]x
.

For structures tilted by a sheared flow we intuitively expe
the phase angledky

to be proportional to the shear ratev08 .
Indeed, for the passively advected plane wave conside
above]dky

/]x5kx2v08kyt showing that the kinetic energ
transfer terms are proportional to the square of the shear
and the amplitude of the fluctuating motions. Moreover,
presence of a seed shear flow will result in a definite dir
tion for a massive kinetic energy transfer from the linea
forced modes, the fluctuating motions, to the linea
damped modes, the sheared mean flows. In the case of
confined mode structures, the kinetic energy integrals evo
according to the Lotka-Volterra equations

dK

dt
5~g2aU !K,

dU

dt
52~m2aK !U. ~3!

Here g corresponds to the linear growth of the fluctuati
level in the absence of differential rotation, as described
the first term on the right-hand side of Eq.~2a!. The term
proportional tom represents collisional damping of differen
tial rotation energy while the parametera measures the effi-
ciency of mean flow generation by fluctuating motions. T
quasilinear origin of this self-regulation process was recen
emphasized in Ref.@14#.

To further demonstrate the occurrence of dynamical re
lation, we next consider the thermal convection model~1c!
and begin by employing the method of modal truncatio
Apart from providing significant physical insight, such low
dimensional approaches often capture the basic mechan
that continue to operate in the strongly nonlinear regi
@10–12#. A sound truncation of Eq.~1! is given by Ref.@11#

c5Ĉ11sinpxsinkyy1Ĉ01sinpx1Ĉ12sin 2px coskyy,

u5Q̂11sinpx coskyy1Q̂02sin 2px1Q̂12sin 2pxsinkyy.
1-2
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Here and in the following we invoke boundary conditio
corresponding to free-slip and stress-free, while the temp
ture is assumed to be constant on the radial boundaries.
parently, the tilting of the convection cells in the above tru
cation is given by the presence of azimuthally phase-shi
higher radial harmonics~12! of the linearly driven modes
~11!. This also provides a path to fluctuation dissipation.
the limit of large ky , the truncated evolution of the mod
amplitudes may be reduced to four coupled ordinary diff
ential equations, which may be written as@12#:

Q̇0252Q022C11
2 ,

Ċ115g11C111C11Q022C01C12,

Ċ0152 ~P/4! C011 $@3~11P!#/4P% C11C12,

Ċ1252n12C121C11C01.

A Lotka-Volterra model is now obtained by suppressing
temperature profile back-reactionQ02 and slaving the lin-
early damped stream function modeC12 to C11 and C01.
More generally, if we also slave the temperature modeQ02,
this reduces to the supercritical extension of the Lot
Volterra model in which the additional nonlinear termlK2

appears in the evolution equation for the fluctuation ene
Similar equations were suggested by Diamondet al. @15# as
a paradigmatic model for the transition to improved confin
ment regimes in magnetized plasmas. Again we empha
the role of the conservative transfer of kinetic energy fro
the fluctuations to the mean flows involved in the reduct
of radial convective transport, and do not allude to the t
bulence shear decorrelation mechanism@4,9,15#.

Finally, the fully nonlinear problem is addressed by mea
of numerical simulations of model~1!. To this end we em-
ploy a hybrid finite difference–spectral code and present

FIG. 1. Evolution of the domain integrated radial convecti
flux Gu , the mean flow kinetic energyU, and the fluctuation kinetic
energyK.
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sults for R5106 and unit Prandtl number and periodicit
length. This example serves to demonstrate the genera
havior observed for a wide range of parameters. The spa
resolution is 256 grid points in either direction and the init
condition is a periodic array of convection cells given

Ĉ1151025. In Fig. 1, we present the temporal evolution
the integrated radial convective heat fluxG52u ]c/]y and
the kinetic energies. The mean flow energy displays rel
ation oscillations, while the convective energy and transp
show quasiperiodic bursts separated by quiet phases. Sim
bursting is also observed for the temperature fluctuat
level. This global behavior is readily understood in terms
the Lotka-Volterra equations~3!. Initially the convective en-
ergy grows exponentially due to the primary instabilit
When the fluctuation level becomes sufficiently large to s
tain the mean flows against collisional dissipation (aK
.m), this flow energy grows at the expense of the conv
tive motions. The spatial fluctuations are effectively sta
lized at a sufficiently large mean flow level (aU.g). Ki-
netic energy is however continuously transferred to the m
flows as far asaK.m leading to an almost complete sup
pression of the convective energy and thus the radial con
tive transport. Subsequently, there are no fluctuating moti
to sustain the sheared flows which hence decay on a vis
time scale. Finally, as the mean flows become sufficien
weak (aU,g), the convective energy again starts to gro
and the cycle repeats. This regulation results in a clear c
sality, manifested by a temporal phase-lag, between the
dynamics as observed in all the recent numerical stud
@1–5#.

The global bursting has profound influences on sing
point recordings of the temperature and velocity fields as

FIG. 2. Temperature to the left and radial velocity to the rig
measured in the center of the fluid layer, showing intermittent
cillations.

FIG. 3. Probability distribution function of temperature to th
left and radial velocity to the right for the same signals as in Fig
The broken lines show the fitted normal distributions.
1-3
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readily seen in Fig. 2. The former gives its fingerprint
local probe measurements through a low-frequency mod
tion, resulting in the repetitive occurrence of large-amplitu
events. Consequently, the associated probability distribut
strongly deviate from normal statistics. Figure 3 indeed de
onstrates the presence of large-scale intermittency m
fested by exponential tails, a characteristic of self-organi
turbulent convection@7,8#. The single-point recordings of th
central temperature and radial velocity give flatness fac
of 13 and 23, respectively, while there is no skewness du
the radial symmetry. The low-frequency modulations are a
manifested in the spectral characteristics. This is observe
a significant energy content at small frequencies in the po
spectra, presented in Fig. 4, which should not be confu
with the violent dynamics during individual bursts.

Typical spatial fluctuation structures are presented in F
5. In the quiet phases, the convection cells have small
plitudes and are localized at the radial boundaries where
mean flow shear vanishes. These convection cells form
gions of closed streamlines where mixing occurs. They
separated by a zone of open streamlines in the azimu
direction which effectively inhibits the radial convectiv
transport. This transport barrier is produced by the m
component of the flow. As a consequence, when the m
flow is dissipated, the mixing regions overlap and merge
radially elongated convective cells, or streamers, while
fluctuation energy drastically rises. This results in a stro
heat pulse and a radial transport avalanche. The local pe
large frequencies in the spectra seen in Fig. 4 may be a

FIG. 4. Frequency power spectrum of temperature to the left
the flux spectral density to the right for the same signals as
Fig. 2.
04730
a-
e
ns
-
i-
d

rs
to
o
as
er
d

.
-

he
e-
re
al

n
an
n
e
g
at
o-

ciated with the chaotic transport during the periodic over
of convection cells in their azimuthal propagation@2#.

In summary, we have within a general context discus
and elucidated the self-regulating nature of convection–sh
flow systems. The unidirectional and conservative transfe
kinetic energy from the linearly forced fluctuating to the li
early damped mean flow results in global dynamics akin
Lotka-Volterra oscillations. Numerical simulations show
that this regulation is associated to the large-scale inter
tency in strongly driven convective turbulence with differe
tial rotation. Finally, the spatio-temporal evolution of co
vective structures illustrates the mechanism trigger
transport avalanches.

O.E.G. was sponsored by financial subvention from
Research Council of Norway while N.H.B. was sponsored
the INFM, Italy.
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FIG. 5. Spatial fluctuation structure of the temperature a
stream function in a quiet phase (t50.3) and during a burst (t
50.4). The contour level spacing is given by the increme
valuen.
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